Year 5 - Arithmetic Expectations

This series of documents aims to summarise the number facts, mental calculation strategies and the stage(s) of the progression towards the written methods for each of the four operations.

For each strategy, the concrete and pictorial representations have been suggested. However, to keep the document to a more manageable size, the imagery has not been shown explicitly as this should be found in your school's agreed mental calculations policies.

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

Each strategy will require specific modelling (teaching) and sufficient practice for children to develop confidence, accuracy and fluency in performing them.
Children should also be taught when it is appropriate to use each strategy, by looking at the numbers involved and making effective decisions. Again, this is a sign of a child's fluency in mathematics; being able to recognise which strategy best suits a given calculation, rather than always using the same method regardless of the numbers involved.

Acknowledgements

Special thanks to the following teachers who helped to create these documents:

Sue Byrom - Colne Park Primary	Naomi Tyson - Gisburn Road Community Primary
Tara Warbrick - Colne Park Primary	Nick Browne - Gisburn Road Community Primary
Jane Dempsey - Burnley Springfield Primary	Laura Mitchell - Burnley St Stephen's CE Primary
Andrew Douglas - Burnley Springfield Primary	Moira Waller - Burnley St Stephen's CE Primary

Hannah Blackburn - Lowerhouse Juniors
Jess Dornan - Lowerhouse Juniors
Michelle Hume - Whittlefield Primary
Stephen Riley - Whittlefield Primary

Arithmetic Expectations - Year 5

Skills	Examples
Counting	
Count forwards or backwards in steps of powers of 10 for any given number up to $\text { I } 000000 .$	Count on from 34642 in hundreds. What four numbers would come next in this counting sequence? 422 734, 412 734...
Count forwards or backwards in decimal steps.	Continue this count: $4.4,3.8,3.2, \ldots$ What four numbers would come next in this counting sequence? 2.16, 2.27, 3.38...
Find $0.01,0.1,1,10,100,1000$ and other powers of 10 more or less than a given number.	$154041-100$ $474985+1000$ $202883-10000$ $23.47+0.1$ $6.07-0.1$ $31.09+0.01$ $12.3-0.01$
Number Facts	
Recall addition and subtraction facts for I and 10 (with numbers to one decimal place).	$\begin{array}{lllll} 0.6+0.4=_ & 0.2+\ldots=1 & 1=\ldots+0.5 & 1-0.3=\ldots & 1-\ldots=0.1 \\ 0.7=1-- & & 10 \\ 1.3+8.7=- & 2.5+\ldots=10 & 10=\ldots+4.6 & 10-5.2=_ & 10-\ldots=6.3 \\ 1.9=10-_ & & & \end{array}$
Recall related tables facts for multiples of 10	$\begin{aligned} & 70 \times 6 \\ & 8 \times 40 \\ & 90 \times 6 \end{aligned}$
Recall prime numbers up to 19	Instantly know the prime numbers $2,3,5,7,11,13,17$ and 19
Recall square (${ }^{\mathbf{2}}$) numbers up to $\mathbf{1 2 \times 1 2}$	Instantly know the square of all numbers to 12 : $\begin{aligned} & I^{2}=I, 2^{2}=4,3^{2}=9,4^{2}=16,5^{2}=25,6^{2}=36,7^{2}=49,8^{2}=64,9^{2}=8 I, 10^{2}=100, \\ & I I^{2}=I 2 I \text { and } I 2^{2}=144 \end{aligned}$
Mental Calculation Strategies - Addition and Subtraction	
Derive and use addition and subtraction facts for I (with decimal numbers to two decimal places) Concrete - (if necessary) place value counters Pictorial - number line	$\begin{aligned} & 0.45+==I \\ & +0.27=I \\ & I=0.39+ \\ & I=+0 . \overline{78} \\ & I-\overline{0.08}=\overline{ } \\ & I-\overline{=}=0.61 \\ & 0.54=I- \\ & =I-0 . \overline{89} \end{aligned}$

Partition and combine multiples of thousands hundreds, tens and ones. Concrete (if necessary) - place value counters Pictorial - number line	$\begin{aligned} & 4300+1400 \\ & 364+250 \\ & 3600-1200 \\ & 432-240 \\ & 5124+1352 \\ & \\ & 7584-2351 \end{aligned}$	4300 add $1000=5300$ then add $400=5700$ 364 add $200=564$ then add $50=614$ 3600 subtract $1000=2600$ then subtract $200=2400$ 432 subtract $200=232$ then subtract $40=192$ 5124 add $1000=6124$ then add $300=6424$ then add $\mathbf{5 0}=6474$ then add $2=6476$ (not crossing any boundaries) 7584 subtract $2000=5584$ then subtract $\mathbf{3 0 0}=5284$ then subtract $50=5234$ then subtract $\mathbf{I}=5233$ (not crossing any boundaries)
Partition and combine multiples of ones and tenths. Concrete (if necessary) - place value counters Pictorial - number line	$\begin{aligned} & 5.4+3.2 \\ & 4.7-2.5 \end{aligned}$	5.4 add $\mathbf{3}=7.4$ then add $0.2=7.6$ 4.7 subtract $\mathbf{2}=2.7$ then subtract $0.5=2.2$
Identify and use knowledge of number bonds within a calculation and identify related facts, e.g. $1.5+2.7$ from $15+27$ Concrete (if necessary) - place value counters	$\begin{aligned} & 1.2+0.8 \\ & 2.5+1.3 \\ & 3.8+4.5 \\ & 2-0.7 \\ & 4.6-1.5 \\ & 8.3-5.4 \end{aligned}$	using knowledge of $12+8=20$ using knowledge of $25+13=38$ using knowledge of $38+45=83$ using knowledge of 20-7=13 using knowledge of $46-15=31$ using knowledge of $83-54=29$
Bridge through 10 when adding or subtracting a single digit number (partitioning, e.g. 58+5=58+2+3 or 76-8=76-6-2) Concrete (if necessary) - Diennes equipment, place value counters Pictorial - number line	$\begin{aligned} & 594+170 \\ & 1995+278 \\ & 703-128 \\ & 3002-87 \end{aligned}$	$\begin{aligned} & \text { as } 594+6+164=600+164 \\ & \text { as } 1995+5+273=2000+273 \\ & \text { as } 703-3-125=700-125 \\ & \text { as } 3002-2-85=3000-85 \end{aligned}$
Find differences by counting up through the next multiple of $1,10,100$ or 1000 Concrete (if necessary) - place value counters Pictorial - number line	$\begin{aligned} & 604-289 \\ & 523-160 \\ & 1200-785 \\ & 5003-1960 \\ & 7.3-2.8 \\ & 20.1-6.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 289+I I=300+\mathbf{3 0 0}=600+\mathbf{4}=604 \text { so the difference is } \mathbf{3 I 5} \\ & 160+\mathbf{4 0}=200+\mathbf{3 0 0}=500+\mathbf{2 3}=523 \text { so the difference is } 363 \\ & 785+15=800+\mathbf{4 0 0}=1200 \text { so the difference is } 415 \\ & 1960+\mathbf{4 0}=2000+\mathbf{3 0 0 3}=5003 \text { so the difference is } \mathbf{3 0 4 3} \\ & 2.8+\mathbf{0 . 2}=3+\mathbf{4}=7+\mathbf{0 . 3}=7.3 \text { so the difference is } 4.5 \\ & 6.7+\mathbf{3 . 3}=10+\mathbf{1 0 . 1}=20.1 \text { so the difference is } 13.4 \end{aligned}$
Add or subtract a multiple of 10 and adjust (for those numbers close to multiples of 10) Concrete (if necessary) - Diennes equipment, place value counters Pictorial - number line	$\begin{aligned} & 257+68 \\ & 325+298 \\ & 764-88 \\ & 876-397 \end{aligned}$	$\begin{aligned} & \text { as } 257+70-2=327-2 \\ & \text { as } 325+300-2=625-2 \\ & \text { as } 764-90+2=674+2 \\ & \text { as } 876-400+3=476+3 \end{aligned}$
Mental Calculation Strategies - Multiplication and Division		
Multiply/divide whole numbers and decimals by 10,100 and 1000 Concrete (if necessary) - Diennes equipment, place value counters Pictorial - place value chart	$\begin{aligned} & 75.91 \times 10 \\ & 5.07 \times 10 \\ & 670.4 \times 100 \\ & 360 \times 1000 \\ & 0.76 \times 1000 \end{aligned}$	$\begin{aligned} & 874 \div 10 \\ & 60.1 \div 10 \\ & 7043 \div 100 \\ & 48750 \div 1000 \end{aligned}$

Use related facts to multiply Th000 by a one-digit number and divide a ThH00 by a one-digit number Pictorial - place value chart for multiplying/dividing by 1000 , related facts multiplication trio and related facts division trio	$3000 \times 3 \text { related to } 3 \times 3=9$ This should be understood as 'three thousand threes'. As the number of 3s is 1000x greater than three threes, so the product is 1000x greater. $\begin{array}{r} 7000 \times 5 \\ 8000 \times 9 \end{array}$ $7200 \div 9$ related to $72 \div 9$ This should be understood as 'how many nines in 7200? Compared to how many nines in 72?' As the dividend is $100 x$ greater, then the number of nines in it will be $100 x$ greater. $\begin{aligned} & 3000 \div 6 \\ & 9600 \div 8 \end{aligned}$
Use related facts to multiply $0 . t$ by a one-digit number Pictorial - related facts multiplication trio	$0.3 \times 7 \text { related } 3 \times 7=21$ The number of 7 s is $10 x$ less, so the product will be $10 x$ less. $\begin{aligned} & 0.6 \times 9 \\ & 0.5 \times 4 \end{aligned}$
Use factor pairs to multiply T0 \mathbf{x} T0 Pictorial - place value chart for multiplying by 100	$\begin{aligned} & 30 \times 60 \text { becomes } 3 \times 10 \times 6 \times 10 \text { reordered as } 3 \times 6 \times 10 \times 10 \\ & 70 \times 80 \text { becomes } 7 \times 10 \times 8 \times 10 \text { reordered as } 7 \times 8 \times 10 \times 10 \\ & 50 \times 40 \text { becomes } 5 \times 10 \times 4 \times 10 \text { reordered as } 5 \times 4 \times 10 \times 10 \end{aligned}$
Use compensation to multiply H99 by a one-digit number NB H99 represents a three-digit number with 9 tens and 9 ones Pictorial - rectangular array or a rectangle with given dimensions	599×4 considered as $600 \times 4-I \times 4$ (read as 'six hundred fours subtract one four') 399×6 considered as $400 \times 6-1 \times 6$ (read as 'four hundred sixes subtract one six') 699×9 considered as $700 \times 9-1 \times 9$ (read as 'seven hundred nines subtract one nine')
Use partitioning to multiply U.t by a one-digit number Pictorial - partitioning diagram using grid method strategy	$\begin{aligned} & 6.7 \times 4 \text { becomes } 6 \times 4+0.7 \times 4 \\ & 3.2 \times 7 \text { becomes } 3 \times 7+0.2 \times 7 \\ & 8.5 \times 6 \text { becomes } 8 \times 6+0.5 \times 6 \end{aligned}$
Use partitioning to double or halve numbers including those with two decimal places Concrete (if necessary) - place value counters Pictorial - partitioning diagram	Double 56.7 Find half of 4.62 Double 485.6 Find half of 18.46 Double 8.59 Find half of 8.94 Double 36742 Find half of 17.92 Find half of 32784
Use related facts to divide U.t by a one-digit number Pictorial - place value chart, related facts division trio e.g. $21 \div 7=3$ then $2.1 \div 7=0.3$	$2.1 \div 7$ related to $21 \div 7=3$ This should be understood as 'how many sevens in 2.1? Compared to how many sevens in 21?' As the dividend is $10 x$ smaller, then the number of sevens in it will be $10 x$ smaller. $\begin{aligned} & 3.6 \div 9 \\ & 4.8 \div 4 \end{aligned}$

© Lancashire Mathematics Team - Lancashire County Council 2019

Use related facts to divide U.t by a 0.t Pictorial - place value chart, related facts division trio e.g. $21 \div 7=3$ then $2.1 \div 0.7=3$	$2.1 \div 0.7$ related to $21 \div 7=3$ This should be understood as 'how many 0.7 s in 2 . I? Compared to how many sevens in 21?' As the dividend is $10 x$ smaller and the divisor is $10 x$ smaller, then the answer (quotient) will be the same. $\begin{aligned} & 3.6 \div 0.9 \\ & 4.8 \div 0.4 \end{aligned}$
Use partitioning to divide HTU by a one-digit number Concrete (if necessary) - Diennes equipment, place value counters Pictorial - part-part-whole diagram	$756 \div 9$ By partitioning into 720 and 36 (two multiples of 9 totalling 756) $765 \div 5$ By partitioning into 500 and 250 and 15 (three multiples of 5 totalling 765) $861 \div 7$ By partitioning into 700 and 140 and 21 (three multiples of 7 totalling 86I)

Progression Towards Written Calculation Strategies - Addition

This final stage of the method should have been achieved in Year 3, and should be continued to be used for all written addition calculations.
The first example would be explained as follows:
$5+8=13$, put 3 down and carry the 10 (written as a 1 in the tens column)

HTU		321	
625	367	$+\quad 7$	$£ 3.48$
$+\quad 48$			
673			
1	+85	+48	$+\frac{£ 0.78}{11}$

$600+0=600(6$ written in the hundreds column)

Children will be expected to use this method for adding numbers with up to seven digits, numbers involving decimals and adding any number of amounts together.

Supported (if necessary) by the use of place value counters.

Progression Towards Written Calculation Strategies - Subtraction

This final stage is the compact method of decomposition should have been achieved in Year 4, and should be continued to be used for all written subtraction calculations. Children will be expected to use this method for subtracting numbers with up to seven digits and numbers involving decimals. Supported (if necessary) by the use of place value counters.	The example shown would be explained as follows: We are subtracting 86 from 754. Start with the least significant place value column. Are there enough hundredths to subtract 3 hundredths? No - so let's exchange a tenth from the tenths column for ten hundredths. 2 tenths and 0 hundredths becomes 41 tenth and 10 hundredths. 10 hundredths subtract 3 hundredths $=8$ hundredths Are there enough tenths to subtract 8 tenths? No - so let's exchange a one from the ones column for ten tenths. I one and I tenth becomes 0 ones and I tenths. II tenths subtract 8 tenths $=3$ tenths. Are there enough ones to subtract 4 ones? No - so let's exchange a ten from the tens column for ten ones. 5 tens and 0 ones becomes 4 tens and 10 ones $10-4=6$ 4 tens (40) - 0 tens $=4$ tens (40) Answer 46.37

Progression Towards Written Calculation Strategies - Multiplication

As the grid method for multiplication supports children's number sense and appreciation of the values of each digit, schools can decide if this is the final stage of written multiplication.
It is often easier for children to keep track of the partial products calculated by using the grid method rather than the compact vertical method.
Concerns over 'acceptable methods' for 2 mark questions in the end of key stage 2 test should be weighed up against the improved chance of gaining 2 marks for the correct answer by using the grid method.
4.92×3

x	4	0.9
	0.02	
3	12	2.7

Children may add these mentally.
$+2.7$
$+2.7$
0.06
+
\qquad
72×38

x	70	2
30	2100	60
8	560	16

Optional

Progression Towards Written Calculation Strategies - Division

As the chunking method for division supports children's number sense and appreciation of the values of each digit, schools can decide if this is the final stage of written division. It can be used for both short and long division (Year 6 expectation) and leads to more efficient mental methods.
As children develop their understanding of this method, they should use ever more efficient steps. The menu box may not need to be written, but the children should continue to think in this way.

Decision Making

When calculating, children should ask themselves:

- do I know the answer because it is a fact I have learnt?
- can I work it out easily in my head?
- can I use some equipment or a jotting?
- do I need to use the written method?

The strategies used within this document are taken from the Lancashire Mathematics Team Progression in Mental Calculation Strategies Policies and the Progression Towards Written Methods Policies.

See www.lancsngfl.ac.uk/curriculum/primarymaths for the full policies.

[^0]
[^0]: © Lancashire Mathematics Team - Lancashire County Council 2019

